
longer wavelength perturbations, and then the shortwave perturbations. The latter is in 
qualitative agreement with the data of an experimental investigation of the influence of the 
bluntness of a body leading edge on the stability of boundary layer flow with an external 
supersonic stream. The state in investigations of perturbation development processes at 
supersonic velonities, and in particular, the role of body leading edge bluntness in the loss 
of flow stability in the boundary layer, is examined in detail in [9]. 

The author is grateful to O. S. Ryzhov for valuable remarks made during work on the 
paper. 
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HEAT AND MOMENTUM TRANSFER IN A TURBULENT BOUNDARY 

LAYER ON A CURVED SURFACE 

N. A. Dvornikhov and V. I. Terekhov UDC 532.526.2 

It is known [i-ii] that the presence of relatively small streamwise curvature can have 
significant effect on turbulent heat and mass transfer and skin friction. Here the considera- 
tion of only the deformation of boundary layer, characterized by the ratio of boundary layer 
thickness to radius of curvature ~/R, leads to an appreciably lower effect of curvature on 
skin friction and heat transfer [2, 12] when compared to experiment. Prandtl [i] was one of 
the first to show the similarity between the effects of buoyant forces in stratified fluid 
and streamline curvature in boundary layer. He used mixing length hypothesis to suggest the 
following relation for turbulent skin friction: T/To = #i-- 0.5Ri. The Richardsonnumber used 
here as the parameter differed from its usual form for stratified fluid by the replacement of 
acceleration of gravity by centripetal acceleration. However experimental verification of 
Prandtl's hypotheses showed [8] that the observed effect is an order higher than that given 
by theory. Empirical relations between mixing length and boundary layer parameters and stream- 
line curvature were used to study this problem [2-7]. The basis for these methods is the 
analysis of Monin and Obukhov for the computation of temperature-stratified atmospheric 
boundary layers. Thus, it was suggested in [2] to use different relations for modified mixing 
length, in particular a linear relation 

I/f0 = I -- ~R~, (0. i) 
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where ~, ~o are the mixing lengths for curvilinear and plane boundary layers; the constant 
6 is chosen empirically. Computational methods using these relations give satisfactory agree- 
ment with experiment even in the case of more complex flows, e.g., curved flow under noniso- 
thermalconditions [ii]. However, the question of the proper choice of empirical coefficient 
B remains extremely complex and not resolved to the present time. A method to compute turbu- 
lent momentum, heat, and mass transfer in curvilinear boundary layers has been described in 
this paper without the use of empirical constants that depend on streamline curvature. 

i. Influence of Body Forces on Turbulence 

It is known that turbulent boundary layer can be conditionally split into two parts: 
the wall layer including laminar sublayer and the buffer region, and the outer region of the 
boundary layer. The wall region of the boundary layer is characterized by the transport of 
small eddies from the laminar sublayer to the outer region and these transports are random 
in nature with a length scale of the order of the distance from the wall [13]. The outer 
region of the boundary layer is characterized by the presence of weakened eddies transported 
from the wall region and these eddies do not have appreciable influence on skin friction in 
the wall region. Apparently, turbulence in the outer region of the boundary layer basically 
affects skin friction in the wall regionby altering the momentum transfer coefficients and 
as a result of a fuller velocity profile in the outer region of the boundary layer. Unlike 
turbulent shear stress which is characterized by eddy size of the order of mixing length, the 
maximum effect of body forces on turbulence is through large eddies with length scale of the 
order of boundary layer thickness. In the subsequent breakdown of the largest eddies, small 
eddies intheir turn get energy from larger eddies. As shown by computations described below, 
body forces affect turbulent transport only in the outer region of the boundary layer. 

Let us analyze the effect of body forces on the dynamics of agram-molecule of fluid as it 
moves from the wall to the outer edge of the boundary layer. The equation of motion of the 
fluid particle in the radial direction at the concave surface (in Lagrangian coordinate system) 
is written in the form: 

p~ --dT dV  = lmdV - -  pds (i.i) 
V r" 

Here v' is the fluid particle velocity fluctuation; Ps is its density; f are body forces 
r m 

acting on the gram-molecule in the radial direction. The last term in (i.i) represents pres- 
sure forces. The index s denotes the parameter of the fluid particle displaced from the point 
r + y to the point r; y = (R-- r) is the distance from the wall. 

In writing (I.i) it was assumed that shear stresses acting on the particle are appreciably 
less than pressure and inertia forces. This is because viscous dissipation of energytakes 
place in eddies whose size is considerably smaller than those responsible for momentum transport. 

Equation (I.i) can be written in the form 

Since the volume V is arbitrary, 

�9 P ' " $ / ' - - 1 ' ~ + ' 7 7  d V = O .  
V 

p f l g / d t  = ]m - -  dpldr., ( 1 . 2 )  

2 
Body f o r c e  f a c t i n g  on t h e  f l u i d  p a r t i c l e  i s  made up o f  c e n t r i f u g a l  f o r c e  f c  = P s U s / r  and 

m 
t he  f o r c e  fo t h a t  does  n o t  depend on c u r v a t u r e  and l e a d s  t o  t h e  a p p e a r a n c e  o f  v e l o c i t y  f l u c -  
t u a t i o n s  i n  t he  b o u n d a r y  l a y e r  i n  t h e  a b s e n c e  o f  body  f o r c e s :  

lm = p ,u~ / r  - 1o. ( i .  3) 

The pressure gradient in radial direction can be found from the equation 

Takinginto consideration Eqs. 

@/dr = pu2/r. (i. 4) 

(1.3) and (1.4), Eq. (1.2) takes the form 

, dr ~ ~2 
p~Vr ~7 = P~ ~--- P7 --/0" (1.5) 
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We assume that the fluid mole conserves its momentum as it moves across the boundary 
layer. In view of this, the quantity (u2r2)r+y is represented in series, and limited to only 

linear terms in the first approximation: 

2 2 __ ~9.F2 
(u r )r+u -~ gOu~r2/Or" ( 1 . 6 )  

Similar linear dependence can be obtained from relations used in Prandtl'smixing lengthhypoth- 
esis for the region where wall law is valid. 

The expansion (1.6) is used to obtain an expression for the resultant force acting on 
the fluid particle during its transport: 

22 p~] 
r ' - 7 -  - > r pr+urj 

; ) ) u2,'2- r- 2 u r ~  g p '~ ( 2.~> Ot, r t Op 2 
t Op ~ P ~ \ r 2 - ~ r  + 9 Or 7 g" 

Here 

Substituting (1.7) in (1.5), we obtain 

#2 

dv~ / d r  -- 2 K g -  2io/p~, 

u Our t Op u 2 
K : 2 7 ~ r +  p Or r"  (1.8) 

Or, switching to the coordinates y = R- r 

Ov'T2/Og = - -  2 K g  + 2i0/p~. ( 1 . 9 )  

The velocity fluctuation in radial direction is determined by integrating (1.9) and assuming 
that the integration limit coincides with the distance from the wall: 

Y 

[2ro (1.1o) 
v~ - = - - K g  2 + a P~ 

0 

The e q u a t i o n  ( 1 . 1 0 )  i s  o b t a i n e d  f o r  a c o n s t a n t  v a l u e  of  t he  p a r a m e t e r  K( r )  = c o n s t ,  
though, as it follows from (1.8), the quantity K is determined from the :velocity and density 
distribution inthe boundary layer. However, specially carried out computations showed that 
the use of exponential velocity profile in Eq. (1.8) and the subsequent integration (1.9) 
for the variable across the boundary layer K leads to values of velocity fluctuation close 
to those obtained from Eq. (I.I0). In the absence of body forces (K § 0) the velocity fluc- 
tuation is obtained according to Eq. (i.i0) as 

Y ,2 ~2fo (I.ii) 
v"~ = -~s dg,: 

0 

where  v '2  i s  t he  s q u a r e  o f  t h e  v e l o c i t y  f l u c t u a t i o n  i n  t h e  a b s e n c e  o f  body  f o r c e s  on c u r v i -  
1 ro i n e a r  s u r f a c e .  

Us ing  Eq. ( 1 . 1 1 ) ,  Eq. ( 1 . 10 )  i s  e x p r e s s e d  i n  t h e  fo rm 

t2 t2 
vr - -  v~o = - -  Kg% ( 1 . 1 2 )  

Velocity fluctuation v' in the absence of body forces is expressed in the form normally 
ro 

used in mixing length hypothesis [i]: 

Then from (1.12) 

(+ vT0 = l0 7r  )" 

" i Our 
Ur ~- lo"7"- -$-7 g i - (g/lo) 2 Ri~ ( 1 . 1 3 )  
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where the Richardson number has the form 

u Our t ap u 2 
K 2 r-'~7"r~-" ~ Or " 7  

Bi  = 

Or/ k r Or] 

(1.14) 

Richardson number (1.14) determines the ratio of turbulent energy production by body 
forces to energy production by shear stresses. Here body forces can be not only due to 
circulation gradient but also density gradient in the boundary layer. For boundary layer on 
curved surfacewith constant density (p = const) Eq. (1.14) coincides with the familiar form 
of Richardson number [i] : 

R i  = (2ulr) 

r Cry 

The shear stress distribution across the boundary layer is obtained using Eq. (i.13), 

taking into consideration u' = Io(i/r) 3ur/3r [i], 

I+ ) r t 
= 9u'v '  = Pu U o ] / t  - -  (Y/lo)2Ri = 9l~ Our 2 ] / 1  = (y/ lo)~Bi.  ' ( i  15) 

Equation (1.9) is valid only for flow along concave wall. For the flow near convex 
surface turbulence is attenuated and the scale of fluctuations becomes less than boundary 
layer thickness. 

Velocity fluctuation for convex surface is obtained by integrating equation of motion 
(1.9) over certain linear scale H 

t2 t2 
vr ---- -- KH ~ ~ Vro. (1.16) 

It follows from (1.16) that at a certain limiting distance H = v'o//K velocity fluctua- 

tion becomes zero which corresponds to conditions for turbulence attenuation. 

The attenuation scale can be determined from the following obvious limiting relations- 

if Ri + 0, then H + Y, KH 2 § 0, if Ri § ~, then H + 0, v '2 § 0. The function H = y/ir 
r 

(y/lo) 2Ri. 

Equation (1.16) takes the following form using this relation 

, l t aur]l  / y ~ . 

The distribution of turbulent shear stresses across boundary layer thickness on a con- 
vex surface is related to mean flow parameters by the expression 

~.l~/ t a u r t ~ V  f y 2 

Similar analysis can be carried out even for turbulent heat transfer. Finally we obtain 
heat flux distribution near concave wall 

,, , 2aT(  i a u r ) / V i ~ _ . ( ~ ) ~  (1.18) 
q = c~p.T v~ = %plo ~Tr -7" T r  B i  

and correspondingly near convex wall 

Thus, using Eqs. (1.15), (1.17)-(1.19) it is possible to take into account the effect of 
curvature on skin friction and heat and mass transfer for turbulent flow along concave and 
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convex surfaces. Here it is not necessary to use additional constants that take into account 

the effect of body forces on turbulent transport. 

2. Law of Heat and Mass Transfer and Skin Friction for Turbulent 
Boundary Layer on Curved Surface 

Asymptotic theory of turbulent boundary layer [14] is used to compute the law of heat 
and mass transfer and skin friction. In accordance with this theory and using expressions for 
turbulent skin friction on curved surface (1.15) or (1.17), the relative skin friction func- 
tion is found 

where ~ = (c~/cfo)ae** is the relative skin friction function for Re** = idem; cf = 2~w/p~0, 

el0= 2rw0/pu ~ are skin friction coefficients under the present and standard (isothermal, plane 

impermeable surface) conditions;~T~ = (T/Tw)0, ~ = (T/~w)are shear stress profiles under standard 

and present conditions; ~ = ur/uo(R -- ~) is nondimensional circulation; f is the function that 

determines the effect of body forces on skin friction according to (1.15) and (1.17): For 

concave Surface / = ~I-- (y/10)~ for convex surface ] = I/]fl @(y/lo)~Ri. 

Relative Shear stress distribution in the boundary layer on curved surface can be written 
according to [15] in the form 

' u 4 -  6 2~ -~- = I _ - R - ~ .  (2.2) 
%0 

Here and in what follows the upper sign before 6/R corresponds to flow past concave wall; 

distribution Of relative shear stresses in standard boundary layer is ~o = 1 -- 3~ 2 + 2~ 3. 

Since the parameter f is a function of the distance from the wall, then in order to deter- 
mine skin friction function the limiting relations (2.1) for isothermal conditions aretrans- 
formed to the form 

(2.3) 

where $ = y/6; ~o is the velocity profile in standard boundary layer. 

Circulation distribution in boundary layer on curved surface can be determined from the 
relation 

003 0~0 fltf~)l/2 2 Z  
0 g -  05 ~,To ] ft T ~'-~-~ ' (2 .4 )  

\ / fJ  

or after integration 

d~. (2.5) 

It is possible to use Eq. (2.5) to compute integral relations of the boundary layer: 

6"'16 = ~ ~ (I - -  m) 
i o 7~7) 

(2.6) 
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Fig. i 

The system of equations (2.3)-(2.6) makes it possible to determine all the required 
boundary layer parameters on curved surface. It is necessary to carry out computations by 
the method under standard conditions an exponential velocity profile wo = ~n was chosen. 

The distribution of mixing length across the boundary layer on a plane surface lo was 
computed using the equation 

~/6 = 0.4~ - -  0:64~ 2 -6 0,44~ 3 - -  0 , 1 ~  4, 

obtained by approximating the expression for ~ = lo/~ by a biquadratic polynomial using the 
following boundary conditions: 

= 0 --)- a l o l ~  = •  l o = O; ~ = I - +  lo = 0~09,  a l o l ~  = O. 

Velocity profile for the flow without curvature was used as the first approximation to deter- 
mine Richardson number and corresponding skin friction function from Eq. (2.3). 

The problem of heat and mass transfer could be solved in a similar manner. Since the 
expressions for turbulent heat transport (i.18) and (1.19) were similar to the corresponding 
relations for turbulent skin friction (1.15) and (1.17) on concave and convex surfaces, then 
if hydrodynamic and heat transfer mixing lengths are equal, Io = loT, the heat transfer func- 
tion will coincide with skin friction function. Thus, the above-described computational 
method for skin friction on curved surface using Eqs. (2.3)-(2.6) can also be used to compute 
heat and mass transfer processes. 

Lines i and 2 in Fig. I represent computed results for skin friction on concave and convex 
walls respectively. The data are given in the form of expressions for relative skin friction 
coefficient cf~cfo as a function of the ratio of boundary layer thickness to the radius of 
curvature ~/R, which, as shown by analysis [2], determines quite well the effect of curvature- 
induced body forces on turbulence, i.e., the parameter 6/R in this case is the integral analog 
of Richardson number. Neglecting the geometric effect of curvature in Eqs. (2.3)-(2.6) results 
in a difference of less than 1% from the data given in Fig. i where results are based on com- 
putation of skin friction using empirical relations suggested by different authors for modified 
mixing length. 

A good agreement with experiment is seen for the linear relation (0.i) when the coeffi- 
cient B = 2 (line 3) for the flow past concave surface. The line 4 represents the relation 
using the equation for mixing length I/lo = ~/i- 18 Ri which, as shown in [2], gives more 
satisfactory results in the computation of skin friction on concave surface for large values 
of ~/R compared to values from formula (0.i). 

For flow past convex surfaces, according to [2], it is necessary to put ~ = 3 in the 
formula (0.i), and according to [5, 7], B = 6. The line 5 in Fig. 1 represents computed re- 
sults for the mean value of the coefficient B = 4. Here it is necessary tokeep inview that in 
the outer region of the boundary layer the formula (0.i) gives physically incorrect result. 
If the value of the velocity gradient in the outer region of the flow becomes less than the 
ratio #u/ay~0.Su/~ , then it is necessary to determine 8u/~y from the relation [7] ~u/~y = 
0.3u/6. The condition was taken into consideration in computing the curve 5 in Fig. i. 

Apart from the above-described methods to represent modified mixing length, expressions 
of the following type [2, 6] are also used for flow past convex surfaces 

, !llo -- l l ( i  + 15 Hi). (2.7) 
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The curve 6 in Fig. 1 represents computations using Eq. (2.7) and B = 6. 

As seen from Fig. i, computational results for skin friction using the present model 
for convex and concave surfaces agree well with known methods using different empirical 
relations for modified mixing length. 

Figure 2 shows theoretically determined values of the coefficient ~ for convex (curve 
I) and concave (curve 2) surfaces as a function of the parameter ~**/R, which is more con- 
venient to use in practical computations. It is shown that the value of B varies in the 
range given in [2, 5, 7], where the coefficient B is not a constant and decreases with 
an increase in curvature ~**/R. 

3. Solution of Momentum Integral Relations on Curved Surface. 
Comparison with Experiment ' 

In order to solve the problem we use boundary layer integral relations. Momentum 
integral relations for curved boundary layer can be written in the form 

d6 * * / d x =  c]/2,  (3.1) 

where 8** is the momentum thickness given by Eq. (2.6). 

Using the power law for skin friction on a flat plate, 

c j / 2  = (B/2) ~ e  $ $ - m  ~. (3.2) 

Here He** = p0u06**/~; B/2 = 0.0128; m = 0.25, and the skin friction function is determined by 

using Eq. (2.3). 

The integration of Eq. (3.1) using Eq. (3.2) gives computational relations for Reynolds 
number based on momentum thickness and local skin friction coefficient: 

Re** : 0 . 0 3 6 T  ~ Re~~ 

c1/2 : 0 . 0 2 9 T  ~ Re~ -~ 

(3.3) 

(3.4) 

Equations (3.3) and (3.4) are obtained with the condition that the turbulent boundary layer 
grows from the leading edge of the curved channel x = 0, Re** = 0. 

Thus, the system of equations (2.3)'(2.6), (3.3), and (3.4) makes it possible to compute 
completely thedistribution ofskin friction, velocity profiles, and integral characteristics 
along the curved channel. The solution of integral relations for energy and diffusion and 
the determination of corresponding characteristics of the thermal and diffusive layer do not 
present any significant difficulties. 

Extensive experimental materials have accumulated up to the present time on the dynamics 
and heat transport in curved channels. However an analysis of these results showed that the 
absence of data in the plane pre-insert region~ the presence of pressure gradient along the 
curved channel, etc. make it difficult to compare correctlytheory with experiment. In view 
of this, data from [3] on skin friction along convex surface are of interest; in these experi- 
ments special steps were taken to eliminate streamwise pressure gradient. 

A comparison of experimental data and computations based on present method is shown in 
Fig. 3. The effect of the presence of pre-insert plane segment of the channel on skin friction 
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in the curved channel was taken into consideration using effective radius of curvature of the 
wall from the relation [3] 

where Ref is the effective radius of curvature; R is the geometric radius of curvature of the 
wall. 

For small distances from the leading edge of the curved segment, Eq. (3.5) can be 
approximately expressed in the form 

t / R  ef = ( t / R )  [1 - -  e x p ( - - s / 1 0 6 )  ], 

where s is the distance from the leading edge of the curved segment. The leading edge of the 
curved channel in Fig. 3 corresponds to Re ~ 2"10 ~. It follows from the data in Fig. 3 that 

x 
computed results agree well with experiment, which confirms the correctness of the hypothesis 
used in modeling the transport. 

Similar approach could be used to analyze a wide range of problems in boundary layers 
with body forces. 

J 
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